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Anasazi is a package within the Trilinos Project [Heroux et al. 2005]. Anasazi
uses modern software paradigms to implement algorithms for the numerical solution
of large-scale eigenvalue problems in templated ANSI C++. We define a large-scale
eigenvalue problem to be one where a small number (relative to the dimension of
the problem) of eigenvalues and the associated eigenspace are computed, and only
knowledge of the underlying matrix via application on a vector (or group of vectors)
is assumed.

An inspiration for Anasazi is the ARPACK [Lehoucq et al. 1998] FORTRAN
77 software library. ARPACK implements one algorithm, namely an implicitly
restarted Arnoldi method [Sorensen 1992]. In contrast, Anasazi provides a software
framework, including the necessary infrastructure, to implement a variety of algo-
rithms. Anasazi is an extensible framework because the necessary linear algebra
infrastructure is made independent of the algorithms used for the numerical solution
of large-scale eigenvalue problems. We justify our claims by implementing block
variants of three popular algorithms: a Davidson [Davidson 1975] method, a Krylov-
Schur [Stewart 2001a] method, and an implementation of LOBPCG [Knyazev 2001].
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ARPACK has proved to be a popular and successful FORTRAN 77 library for
the numerical solution of large-scale eigenvalue problems. A crucial reason for
the popularity of ARPACK is the use of a reverse communication [Lehoucq et al.
1998, p. 3] interface for applying the necessary matrix-vector products. This allows
ARPACK to provide a callback for the needed matrix-vector products in a simple
fashion within FORTRAN 77. Unfortunately, the reverse communication interface
is cumbersome, challenging to maintain, and does not allow data encapsulation.
Moreover, because ARPACK uses a procedural programming paradigm where the
matrix-vector operations rely upon the physical representation of the data manipu-
lated, ARPACK is susceptible to design changes. Hence code reuse is limited, and
software complexity and maintenance are more cumbersome.

Procedural programming is often at odds with modern software paradigms that
include object-based, object-oriented, and generic programming methods. The C
programming language only allows an object-based programming paradigm. In con-
trast, C++ supports object-oriented techniques and generic programming (typically
via templates). One of the features of Anasazi is the use of generic programming
via static and dynamic polymorphism [Vandevoorde and Josuttis 2002, Chapter
14]. Static polymorphism, via templating of the linear algebra objects, allows algo-
rithms in Anasazi to be written generically (i.e., independent of the data). Dynamic
polymorphism, via virtual functions and object inheritance, allows eigensolvers to
be decoupled from functions such as orthogonalization and stopping conditions; this
functionality can then be decided at runtime. The upshot of this decoupling is the
facilitation of code reuse and algorithmic modification.

The result of these design choices is to make Anasazi an extensible and interop-
erable software. Extensibility is apparent in the infrastructure’s support for a sig-
nificant class of large-scale eigenvalue algorithms. Extensions can be made through
the addition of new algorithms or through modification of existing algorithms. This
is encouraged by promoting code modularization and multiple levels of access to
solvers and their data. Interoperability is enabled via the treatment of both matri-
ces and vectors as opaque objects—only knowledge of the matrix and vectors via
elementary operations is necessary. This permits algorithms to be implemented in
a generic manner, requiring no knowledge of the underlying linear algebra types or
their specific implementations.

We emphasize that our interest is not solely in modern software paradigms.
Rather, our paper demonstrates that a rich collection of block eigensolvers is easily
implemented using modern programming techniques. Our approach is algorithm-
oriented [Musser and Stepanov 1994] because algorithms are front and center, fol-
lowed by the software abstractions. Moreover, our implementations are required
to be efficient and portable. We believe that Anasazi is the natural successor to
ARPACK, inheriting, and extending, the quality practices employed by ARPACK.

Related software efforts that implement several algorithms for large-scale eigen-
value (the reader is referred to [Hernández et al. 2005] for a software survey) prob-
lems are:

—The SLEPc [Hernández et al. 2006] library written in C for the solution of large
scale sparse eigenvalue problems on parallel computers. SLEPc is an extension of
PETSc [Balay et al. 2001] and can be used for either Hermitian or non-Hermitian,
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standard or generalized, eigenproblems;
—PRIMME [Stathopoulos and McCombs 2006] is a C library to find a number of

eigenvalues and their corresponding eigenvectors of a real symmetric, or complex
Hermitian matrix.

Both of these efforts use an object-based programming paradigm and so do not em-
ploy generic or object-oriented techniques. We are not aware of any other software
implementing block algorithms for large-scale eigenvalue problems using object-
oriented or generic programming techniques.

Our paper is organized as follows. Section 1 describes a class of algorithms that
can be implemented within Anasazi. Section 2 reviews our software framework.
Section 3 provides timings comparing ARPACK and Anasazi.

1. ALGORITHM OVERVIEW

Anasazi software provides algorithms for computing a partial eigen-decomposition
for the generalized eigenvalue problem

Ax = Bxλ, A,B ∈ Cn×n . (1)

The matrices A and B are large, possibly sparse, and we assume that only their
application to a block of vectors is required. The reader is referred to [Saad 1992;
Sorensen 2002; Stewart 2001b; van der Vorst 2002] for background information and
references on the large-scale eigenvalue problem.

Algorithm 1.1 is a simple extension of the Rayleigh-Ritz procedure given in [Stew-
art 2001b, p.281]. This algorithm lists the salient steps found in the majority of
large-scale eigensolvers, namely subspace projection methods.

Algorithm 1.1: Rayleigh-Ritz Algorithm

(1) Let the matrices M, U and V be given
(2) Form the Rayleigh quotients VHMΦ(A)U and VHMΨ(B)U

where Φ(·) and Ψ(·) are matrix functions

(3) Compute an eigen-decomposition for the matrix pencil
(VHMΦ(A)U,VHMΨ(B)U)

(4) Return the eigen-decomposition as an approximation

for the pencil (A,B)

The matrices U and V are bases for the trial and test subspaces U and V,
respectively. When these two subspaces are distinct, then the Rayleigh-Ritz method
is called oblique. Otherwise, when V = U the orthogonal Rayleigh-Ritz method
results. The functions Φ(·) and Ψ(·) are often used to improve convergence to the
eigenvalues and eigenspace of interest. For example, a standard approach is to
reformulate (1) as

Φ(A)x ≡ (A−Bσ)−1Bx = x(λ− σ)−1 ≡ Ψ(B)xν,

where σ ∈ C is near the eigenvalues of interest. This is an example of the shift-invert
spectral transformation. The matrix M is often used to denote an inner product;
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for instance M can be set equal to A or B when either matrix is Hermitian positive
semi-definite. A second example is to apply an equivalence transformation to (1)
resulting in

Φ(A)x ≡ N−1Ax = N−1Bxλ ≡ Φ(B)xλ

where Ψ = Φ and set M = N.
Several linear algebra operations are required to implement large-scale eigenvalue

computations. These include

—Matrix-matrix applications: AU.
—Block inner products: VH(AU).
—Solution of typically much smaller eigenproblems (step 3).

Other linear algebra operations include methods for creating and performing vectors
and vector arithmetic. We list our primitives in Section 2.

Algorithm 1.1 needs to be augmented with several steps in order to result in
an eigen-iteration. Algorithm 1.2 lists these additional steps, so defining an eigen-
iteration.

Algorithm 1.2: Eigen-iteration

(1) Update the matrices U and V

(2) Determine whether any portion of the eigen-decomposition
is of acceptable accuracy

(3) Deflate the accurate portions of the eigen-decomposition

(4) Terminate the Eigen-iteration

A distinguishing characteristic of the Rayleigh-Ritz algorithm is the number of
columns m of U and V. The size of the bases U and V is either constant or increas-
ing. An example of the former is the gradient-based method LOBPCG [Knyazev
2001]. Examples of the latter are the Davidson algorithm [Davidson 1975] and
Krylov-based methods such as the Arnoldi [Arnoldi 1951] and Lanczos [Lanczos
1950] methods. Ultimately, the success of an algorithm depends crucially upon
these subspaces and the choice of bases representation, an issue that is beyond the
scope of this paper.

The algorithms that are currently available in Anasazi are:

(1) a block extension of a Krylov-Schur method [Stewart 2001a],
(2) a block Davidson method as described in [Arbenz et al. 2005],
(3) an implementation of LOBPCG as described in [Hetmaniuk and Lehoucq 2006].

Three remarks are in order. First, all three algorithms are instances of the orthog-
onal Rayleigh-Ritz method. Therefore the eigen-decomposition computed in step
(3) of Algorithm 1.1 is equivalent to a Schur form when (1) is a regular pencil.

Our second remark is that only the Krylov-Schur method can be used for non-
Hermitian generalized eigenvalue problems. In contrast, all three algorithms can
be used for symmetric positive semi-definite generalized eigenvalue problems.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Our third remark is that block methods are defined to be those that apply A (or
B) to a collection of vectors. This improves the ratio of floating-point operations
to memory reference and so better exploits the memory hierarchy.

This discussion illustrates that many distinct parts make up a large-scale eigen-
solver code: orthogonalization, sorting tools, dense linear algebra, convergence
testing, multivector arithmetic, etc. Anasazi presents a framework of algorithmic
components, decoupling operations where possible in order to simplify component
verification, encourage code reuse, and maximize flexibility in implementation.

2. ANASAZI SOFTWARE FRAMEWORK

This section outlines the Anasazi software framework and motivates the design
decisions made in the development of Anasazi. Three subsections describe the
Anasazi operator/vector interface, the eigensolver framework, and a review of the
various classes in Anasazi. The reader is referred to [Baker et al. ; Sala et al. 2004]
for software documentation and a tutorial.

2.1 The Anasazi Operator/Vector Interface

Anasazi utilizes abstract interfaces for matrix operators and multivectors. This
allows generic programming techniques to be used when developing the numerical
algorithms in Anasazi. In C++, generic programming is traditionally implemented
using virtual functions or templates. The abstract numerical interfaces used in
Anasazi are supported via templates. Most classes in Anasazi accept three template
parameters:

—a scalar type, describing the field over which the vectors and operators are defined;
—a multivector type, that depends upon the scalar type, providing a data structure

that denotes a collection of vectors; and
—an operator type, that depends upon the multivector and scalar types, providing

linear operators used to define eigenproblems and preconditioners.

Templating an eigensolver on multivector and scalar types enables software reuse.
For example, ARPACK implements the four subroutines—SNAUPD, DNAUPD, CNAUPD,
and ZNAUPD—for solving non-Hermitian eigenproblems. Four separate subroutines
are provided for these four FORTRAN 77 floating point types (single and double
precision real, and single and double precision complex). Moreover, four additional
subroutines are needed for a distributed memory implementation (say using MPI).
In contrast, templating on multivector and scalar types allows Anasazi to main-
tain only one C++ code. The multivector templating allows us to separate the
eigenvalue algorithm from the linear algebra data structures. The operator type
templating is analogous to the reverse communication interface used by ARPACK
for providing matrix-vector products.

Because the underlying data types are unknown to the Anasazi developer, al-
gorithms are developed abstractly. Access to the functionality of the underlying
objects is provided via the classes MultiVecTraits and OperatorTraits. These
classes implement the traits mechanism [Meyers 1995] and specify the operations
that the multivector and operator classes must support in order to be used within
Anasazi. This mechanism hides the low-level details of the underlying data struc-
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Table I. Methods provided by the OperatorTraits and MultiVecTraits interfaces.

OperatorTraits

Method name Description

Apply Applies an operator to a MultiVector, placing the result in

another MultiVector.

MultiVecTraits

Method name Description

Clone Creates a new multivector containing a specified number of

columns.

CloneCopy Creates a new multivector with a copy of the contents of an
existing multivector (deep copy).

CloneView Creates a new multivector that shares the selected contents of
an existing multivector (shallow copy).

GetVecLength Returns the vector length of a multivector.

GetNumberVecs Returns the number of vectors in a multivector.

MvTimesMatAddMv Applies a serial, dense matrix M to multivector A and accu-
mulates into another multivector B:
B ← αAM + βB.

MvAddMv Performs multivector AXPBY: B ← αA + βB.

MvTransMv Computes the matrix C ← αAHB.

MvDot Computes the vector b where the components are the indi-

vidual dot-products of the i-th columns of A and B, i.e.,

b[i] = A[i]HB[i].

MvScale Scales the columns of a multivector.

MvNorm Computes the 2-norm of each vector of A.

SetBlock Copies the vectors in A to a subset of vectors in B.

MvRandom Replaces the vectors in A with random vectors.

MvInit Replaces each element of the vectors in A with α.

MvPrint Prints the Multivector to an output stream.

tures, allowing the same algorithmic implementation to be compatible with varying
underlying linear algebra objects (e.g., serial and parallel).

The methods defined by these traits classes are listed in Table I. Most of the
methods listed are self-explanatory. The first three MultiVecTraits methods are
C++ virtual constructors [Meyers 1996, pp. 123–129] that create multivectors from
a multivector provided by the user. Deep and shallow copy denotes whether the ob-
ject contains the storage for the multivector entries or not. A shallow copy is useful
when only a subset of the columns of a multivector is required for computation.

The use of MultiVecTraits and OperatorTraits requires that specializations of
these traits classes have been implemented for given template arguments. Anasazi
provides the following specializations of these traits classes:

—Epetra MultiVector and Epetra Operator (with scalar type double) allow Anasazi
to be used with the Epetra [Heroux et al. ] linear algebra library provided with
Trilinos.

—Thyra::MultiVectorBase and Thyra::LinearOpBase (with arbitrary scalar type)
allow Anasazi to be used with any classes that implement the abstract interfaces
provided by the Thyra [Bartlett et al. ] package of Trilinos.

—MultiVec and Operator (with arbitrary scalar type) allow Anasazi to be used
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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with any classes that implement the Anasazi abstract base classes MultiVec and
Operator.

For scalar, multivectors and operators types not covered by these, specializations
of MultiVecTraits and OperatorTraits must be created. The benefit of the
traits mechanism is that it does not require that the chosen types are C++ classes.
Furthermore, it does not require rewriting the user’s data types, as the traits class
specialization occurs external to the chosen types.

2.2 The Anasazi Framework

We explain how the Rayleigh-Ritz method of Algorithm 1.1 and the additional
steps listed in Algorithm 1.2 are implemented within the Anasazi framework.

In Anasazi, eigensolvers (encapsulating an iteration and its associated state) are
derived classes of the abstract base class Eigensolver. An inheritance relationship
was chosen for the following reasons:

—the abstract base class defines an interface used for checking the status of a solver
by a status test;

—a concrete derived class will perform the iteration associated with a specific eigen-
solver algorithm; and

—a concrete derived class will act as a container for the state associated with its
particular iteration.

The class StatusTest is used to specify stopping conditions for an eigen-iteration.
Eigensolver queries the StatusTest during its class method iterate() to de-
termine whether or not to continue iterating. Concrete subclasses of StatusTest
provide particular stopping criteria. A typical interaction between these two classes
is illustrated in Figure 1.

SomeEigensolver::iterate() {

while ( somestatustest.checkStatus(this) != Passed ) {

//

// perform eigensolver iterations

//

}

return; // return back to caller

}

Fig. 1. Example of communication between status test and eigensolver

Each StatusTest provides a virtual method, checkStatus(), which queries the
methods provided by Eigensolver and determines whether the solver meets the
criteria defined by a particular status test. After a solver returns from iterate(),
the caller has the ability to access the solver’s state and the option re-initializing
the solver with a new state and continue iterating.

While this approach to interfacing with the solver is powerful, it can be over-
whelming. It requires the user to construct a number of support classes and to
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manage calls to Eigensolver::iterate(). The SolverManager class was devel-
oped to encapsulate an instantiation of Eigensolver, providing additional func-
tionality and handling low-level interaction with the eigensolver that a user may not
want to specify. Solver managers are intended to be easy to use, while still providing
the features and flexibility needed to solve large-scale eigenvalue problems.

For example, the constructor of BlockDavidsonSolMgr accepts only two argu-
ments: an Eigenproblem specifying the eigenvalue problem to be solved and a
ParameterList of options specific to this solver manager. This solver manager
instantiates a BlockDavidson subclass of Eigensolver, along with the status tests
and other support classes needed by the eigensolver. To solve the eigenvalue prob-
lem, the user simply calls the solve() method of BlockDavidsonSolMgr. The
solver manager calls iterate(), performs restarts and locking, and places the final
solution into the Eigenproblem.

Under this framework, users have a number of options for performing eigenvalue
computations with Anasazi:

—use an existing solver manager. In this case, the user is limited to the functionality
provided by the existing solver managers.

—Develop a new solver manager for an existing eigensolver. The user can extend
the functionality provided by the eigensolver, specifying custom configurations
for status tests, orthogonalization, restarting, locking, etc.

—Implement a new eigensolver (and so extend Anasazi). The user can write an
eigensolver for an iteration that is not represented in Anasazi. The user still has
the benefit of the support classes provided by Anasazi, and the knowledge that
this effort can be easily employed by anyone already familiar with Anasazi.

2.3 Anasazi Classes

Anasazi is designed with extensibility in mind, so that users can augment the
package with any special functionality that may be needed. However, the released
version of Anasazi provides all functionality necessary for solving a wide variety of
problems. This section lists and briefly describes the classes used in Anasazi.

We remark that Anasazi is largely independent of Trilinos. Anasazi only relies
on the Trilinos Teuchos package [Heroux et al. ] that provides a common suite
of tools, such as: RefCountPtr, a reference-counting smart pointer [Detlefs 1992];
ParameterList, a list for algorithmic parameters of varying data types; and the
BLAS [Lawson et al. 1979; Blackford et al. 2002] and LAPACK [Anderson et al.
1999].

The abstract base class Eigenproblem is a container for the components and
solution of an eigenvalue problem. By requiring eigenproblems to derive from
Eigenproblem, Anasazi defines a minimum interface that can be expected of all
eigenvalue problems by the classes that will work with the problems (e.g., eigen-
solvers and status testers). Anasazi provides users with a concrete implementation
of Eigenproblem, called BasicEigenproblem. This basic implementation provides
all the functionality necessary to describe both generalized and standard, Hermitian
and non-Hermitian linear eigenvalue problems.

The methods for storing and retrieving the results of the eigenvalue computation
in an Eigenproblem are:
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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const Eigensolution & Eigenproblem::getSolution();
void Eigenproblem::setSolution(const Eigensolution & sol);

The Eigensolution class was developed in order to facilitate setting and retriev-
ing of solution data. This structure contains the following information:

—RefCountPtr< MV > Evecs
The computed eigenvectors.

—RefCountPtr< MV > Espace
An orthonormal basis for the computed eigenspace.

—std::vector< Value< ScalarType > > Evals
The computed eigenvalue approximations.

—std::vector< int > index
An index into Evecs to enable compressed storage of eigenvectors for real, non-
Hermitian problems.

—int numVecs
The number of computed eigenpair approximations.

Anasazi solver managers are expected to place the results of their computation in
the Eigenproblem class using an Eigensolution. However, a user working directly
with an eigensolver (i.e., not with a solver manager) will need to recover the solution
directly from the eigensolver state.

The Eigensolver abstract base class defines the basic interface that must be
met by any eigensolver class in Anasazi. Specific eigensolvers are implemented as
derived classes of Eigensolver.
Eigensolver defines two significant types of methods: status methods and solver-

specific methods. The status methods are defined by the Eigensolver abstract
base class and represent the information that any status test can request from any
eigensolver. A list of these methods is given in Table II.

Table II. A list of generic status methods provided by Eigensolver.

Method Description

getNumIters current number of iterations.

getRitzValues most recent Ritz values.
getRitzVectors most recent Ritz vectors.
getRitzIndex Ritz index needed for indexing compressed

Ritz vectors.

getResNorms residual norms, with respect to the
OrthoManager.

getRes2Norms residual Euclidean norms.
getRitzRes2Norms Ritz residual Euclidean norms.
getCurSubspaceDim current subspace dimension.

getMaxSubspaceDim maximum subspace dimension.
getBlockSize block size.

One of the tenets of object-oriented programming is data encapsulation. This
seems to contradict the need to be as efficient as possible in scientific computing.
To this end, each eigensolver provides low-level methods for accessing and setting
the state of the solver:
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—getState() - returns a solver-specific structure with read-only pointers to the
current state of the solver.

—initialize(...) - accepts a solver-specific structure enabling the user to ini-
tialize the solver with a particular state.

The combination of these two methods, along with the flexibility provided by status
tests, provides the user with a large degree of control over eigensolver iterations.
SolverManager defines only two methods: a constructor accepting an Eigenproblem

and a parameter list of options specific to the solver manager; and a solve()
method, taking no arguments and returning either Converged or Unconverged
(Figure 2).

// create an eigenproblem

RefCountPtr< Anasazi::Eigenproblem<ScalarType,MV,OP> > problem = ...;

// create a parameter list

ParameterList params;

params.set(...);

// create a solver manager

Anasazi::BlockDavidsonSolMgr<ScalarType,MV,OP> solman(problem,params);

// solve the eigenvalue problem

Anasazi::ReturnType ret = solman.solve();

// get the solution from the problem

Anasazi::Eigensolution<ScalarType,MV> sol = problem->getSolution();

Fig. 2. Example: Solving an eigenvalue problem using a SolverManager

The goal of the solver manager is to instantiate a subclass of Eigensolver, along
with the necessary support objects. Another purpose of many solver managers is
to manage and initiate the repeated calls to the underlying solver’s iterate()
method. For solvers that increase the dimension of trial and test subspaces (e.g.,
Davidson and Krylov subspace methods), the solver manager may also assume the
task of restarting (so that storage costs may be fixed). This decoupling of restarting
from the eigensolver is beneficial due to the numerous restarting techniques in use.

Performing an eigen-iteration requires a number of support classes. These are
passed through the objects constructor, defined by Eigensolver to take the form
listed in Figure 3.

Eigensolver(

const RefCountPtr< Eigenproblem<ST,MV,OP> > &problem,

const RefCountPtr< SortManager<ST,MV,OP> > &sorter,

const RefCountPtr< OutputManager<ST> > &printer,

const RefCountPtr< StatusTest<ST,MV,OP> > &tester,

const RefCountPtr< OrthoManager<ST,OP> > &ortho,

ParameterList &params

);

Fig. 3. Constructor for eigensolver

These support classes are employed for the following purposes:
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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—problem - the eigenproblem to be solved; problem operators are defined.
—sorter - the sort manager selects the eigenvalues of interest.
—printer - the output manager dictates the verbosity level in addition to process-

ing output streams.
—tester - the status tester dictates when the solver terminates iterate().
—ortho - the orthogonalization manager defines the inner product in addition to

performing orthogonalization for the solver.
—params - the parameter list specifies eigensolver-specific options.

The purpose of the StatusTest is to give the user or solver manager flexibility in
terminating the eigensolver iterations in order to interact directly with the solver.
For instance, typical reasons for terminating the iteration are:

—some convergence criterion has been satisfied;
—some portion of the subspace has reached sufficient accuracy to be deflated from

the iterate or locked;
—the solver has performed a sufficient number of iterations.

The variation that exists for monitoring these and other conditions requires an
abstract mechanism controlling the iteration.

The following is a list of Anasazi-provided status tests:

—StatusTestMaxIters - monitors the number of iterations performed by the
solver; it can be used to halt the solver at some maximum number of iterations
or even to require some minimum number of iterations.

—StatusTestResNorm - monitors the residual norms of the current iterate.
—StatusTestOrderedResNorm - monitors the residual norms of the current iterate,

but only considers the residuals associated with the most significant eigenvalues.
—StatusTestCombo - a boolean combination of other status tests, creating near

unlimited potential for complex status tests.
—StatusTestOutput - a wrapper around another status test, allowing for printing

of status information on a call to checkStatus().

The purpose of a sort manager is to separate the eigensolver classes from the
sorting functionality required by those classes. This satisfies the flexibility principle
sought by Anasazi, by giving users the opportunity to perform the sorting in what-
ever manner is deemed to be most appropriate. Anasazi defines an abstract class
SortManager with two methods, one for sorting real values and one for sorting com-
plex values. Anasazi provides a concrete implementation called BasicSort. This
class provides basic functionality for selecting significant eigenvalues: by largest or
smallest real part, by largest or smallest imaginary part, or by largest or smallest
magnitude.

Orthogonalization and orthonormalization are commonly performed computa-
tions in iterative eigensolvers. As explained in Section 1, all our current implemen-
tations are orthogonal Rayleigh-Ritz methods where an orthonormal basis represen-
tation is computed. The abstract base class OrthoManager defines a small number
of orthogonalization-related operations, including choice of an inner product (e.g.,
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Table III. Comparing the overhead of Anasazi with ARPACK. — denotes a measurement below

the clock resolution.

Computing 50 Arnoldi vectors
Matrix-vector Total

Matrix size ARPACK Anasazi ARPACK Anasazi

10000 — 0.01 0.14 0.15
62500 0.04 0.09 1.20 1.17

250000 0.15 0.32 4.98 4.79

1000000 0.66 1.23 19.2 18.8

Computing 100 Arnoldi vectors
Matrix-vector Total

Matrix size ARPACK Anasazi ARPACK Anasazi

10000 0.03 0.02 0.53 0.55
62500 0.03 0.17 4.37 4.29

250000 0.34 0.64 17.8 17.5
1000000 1.27 2.40 68.4 67.1

Computing 150 Arnoldi vectors
Matrix-vector Total

Matrix size ARPACK Anasazi ARPACK Anasazi

10000 0.03 0.04 1.15 1.22
62500 0.14 0.26 9.53 9.39

250000 0.50 0.96 38.1 38.0
1000000 1.97 3.56 149 146

Euclidean, induced by a symmetric positive semi-definite B). Combined with the
plethora of available methods for performing these computations, Anasazi has left
as much leeway to the users as possible. To this end, Anasazi provides two concrete
orthogonalization managers:

—BasicOrthoManager - performs orthogonalization using multiple steps of classical
Gram-Schmidt [Daniel et al. 1976].

—SVQBOrthoManager - performs orthogonalization using the SVQB orthogonaliza-
tion technique described by Stathapoulos and Wu [Stathopoulos and Wu 2002].

In order to perform the Rayleigh-Ritz analysis used by the algorithms illustrating
this section, Anasazi utilizes the classes Teuchos::BLAS and Teuchos::LAPACK.
The purpose of these classes is to provide templated interfaces to the dense linear
algebra routines provided by the BLAS and LAPACK libraries. Therefore, even
such operations as dense matrix-matrix multiplication are made independent of the
scalar field defining the eigenvalue problem. Users are therefore currently limited
to algorithms provided by LAPACK.

3. BENCHMARKING

We now discuss the important issue of comparing Anasazi and ARPACK on a model
problem. Our interest is in accessing any overhead of Anasazi and ARPACK, C++
and FORTRAN 77 software.

We benchmarked Anasazi’s BlockKrylovSchurSolMgr (with a block size of one)
and ARPACK’s dnaupd that compute approximations to the eigenspace of a non-
symmetric matrix. Our goal was to benchmark the cost of computing 50, 100, 150
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Arnoldi vectors for a finite difference approximation to a two dimensional convec-
tion diffusion problem. Both codes use the DGKS [Daniel et al. 1976] method for
maintaining the numerical orthogonality of the Arnoldi basis vectors. The Intel 9.1
C++ and FORTRAN compilers were used with compiler switches “-O2 -xP” on an
Intel Pentium D, 3GHz, 1MB L2 cache, 2GB main, Linux/FC5 PC.

The operator application in Anasazi records approximately twice as much time
as the ARPACK implementation. This is because the Anasazi code used an Epetra
sparse matrix representation, while the ARPACK implementation applies the block
tridiagonal matrix via a stencil. Note that the operator application comprised
only a small portion of the clock time in these tests. The performance of the
Anasazi library in computing the Arnoldi vectors is similar to that of ARPACK.
Our conclusion is that a well-designed library in C++ is as efficient as a FORTRAN
77 library.
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